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Abstract. A transverse mixed spin-1/2 and spin-SB Ising model on the honeycomb lattice is
studied by the use of a generalized star-triangle transformation which maps the model on an
exactly solvable Ising model. The exact results for the phase diagram, compensation temperature,
magnetization and transverse susceptibility are obtained and discussed.

Exact calculations in statistical mechanics traditionally attract considerable interest of
researchers since they are very important for direct comparisons with experimental data.
Moreover, from the theoretical point of view they are extremely useful for testing various
approximated schemes. Very nice and clear exposition of the exactly solved models can be
found in the book by Baxter [1]. It is well known, that the straightforward exact treatment of
the two- and three-dimensional models is very hard and requires extraordinary mathematical
skills. A simpler way for obtaining exact results (which is also used in this work) is based on
the mapping of a new model on the relevant exactly solvable model [2].

In this article, we will deal with the transverse Ising model which has been recently
intensively studied both experimentally and theoretically. From the experimental point of
view, the transverse Ising model is a valuable model because of its applications, for example
in studies of hydrogen bonded ferroelectrics [3], cooperative Jahn-Teller systems [4] and
strongly anisotropic magnetic materials in the transverse field [5]. More details about possible
applications of the model can be found in reviews of Blinc and Zeks [6] and Stinchcombe [7].
Although the transverse Ising model is one of the simplest quantum models, the complete
exact solutions have been obtained only in the one-dimensional case [8]. For two-dimensional
systems the exact results are known only for the initial transverse susceptibility on regular
lattices [9].

In general, the main mathematical problem in treating quantum statistical models
(including the transverse Ising model) is the noncommutability of relevant operators in the
Hamiltonian. To overcome this difficulty, we introduce in the present paper a transverse Ising
model on the honeycomb lattice consisting of classical (Ising-type) and quantal spins which
can be exactly solved by the use of generalized star-triangle transformation [10].

In what follows, we will study the two-sublattice mixed spin (SA = 1/2, SB > 1/2) Ising
system on the honeycomb lattice in which only spins on the sublattice B interact with the
transverse field. The Hamiltonian of the system can be written in the form

Ĥh =
∑

i

Ĥi (1)
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with Ĥi = −J (µ̂z
i1 + µ̂z

i2 + µ̂z
i3)Ŝz

i −
Ŝx
i , where the summation is over all sites of sublattice B.

The classical Ising spins µ̂ik occupy sublattice A and the quantum spins Ŝi occupy sublattice B.
The first term of the site Hamiltonian Hi describes the interaction of the B atom with its three
nearest-neighbours and the second one expresses the interaction of B atom with the transverse
field (
). It is worth noticing that the ground state of our system orders ferromagnetically for
J > 0 or ferrimagnetically for J < 0.

Owing to the topology of the lattice, the site Hamiltonian Ĥi obeys the following
commutation relation

[Ĥi , Ĥj ] = 0 i �= j (2)

which is of principal importance to ensure exact solvability of the model under investigation.
The partition function of the system takes the form

Zh = Tr e−βĤh = Tr
N/2∏
i=1

e−βĤi (3)

where N denotes the total number of atoms on the honeycomb lattice and β = 1/kBT . To
proceed further, one now has to diagonalize the site Hamiltonian Ĥi . Fortunately, it can be
directly performed by using the following rotational transformation

Ŝz
i = Ŝz′

i cos(ϕi) − Ŝx ′
i sin(ϕi) Ŝx

i = Ŝz′
i sin(ϕi) + Ŝx ′

i cos(ϕi) (4)

where

sin(ϕi) = 
√

2 + �2

i

cos(ϕi) = �i√

2 + �2

i

and �i = J (µ̂z
i1 + µ̂z

i2 + µ̂z
i3).

(5)

Applying relations (4)–(5) we can rewrite equation (3) as follows

Zh =
∑
{µz

αi }

N/2∏
i=1

∑
Sz′

i

exp
{
Sz′

i β

√

2 + [J (µz

i1 + µz
i2 + µz

i3)]2
}

(6)

where
∑

Sz′
i

runs over (2SB + 1) possible states of the B atom residing on the ith site and∑
{µz

iα} (with µz
iα = ±1/2) represents the trace over all possible configurations of A atoms.

The form of equation (6) implies the possibility to introduce following generalized star-triangle
(or Y − �) transformation

SB∑
Sz′

i =−SB

exp
{
Sz′

i β

√

2 + [J (µz

i1 + µz
i2 + µz

i3)]2
}

= A exp
{
βR(µz

i1µz
i2 + µz

i2µz
i3 + µz

i1µz
i3)

}
.

(7)

Here A and R stand for unknown parameters (R being the exchange parameter of the relevant
triangular lattice) that can be expressed in the form (see for example [10])

A4 = V1V 3
2 βR = ln

V1

V2
(8)

where we have defined the functions

V1 =
SB∑

n=−SB

cosh

(
nβ

2

√
9J 2 + 4
2

)
V2 =

SB∑
n=−SB

cosh

(
nβ

2

√
J 2 + 4
2

)
. (9)
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Now, after putting the critical temperature of the triangular lattice (βcR = R/kBTc = ln 3)
into equation (8), we obtain the following equation for the critical temperature of our system

SB∑
n=−SB

{
3 cosh

(
nβc

2

√
J 2 + 4
2

)
− cosh

(
nβc

2

√
9J 2 + 4
2

)}
= 0 βc = 1/kBTc. (10)

From this equation one can find the transverse-field dependences of the critical temperature
for arbitrary values of the spin SB .

To make a progress in calculating other physical quantities, we substitute equation (7) into
equation (6) and obtain relation

Zh(J, T , 
) = A
N
2 Zt (R, T ) (11)

which relates the partition function of the transverse Ising model on the honeycomb lattice
(Zh) to that of the standard spin-1/2 Ising model on the triangular lattice (Zt ). The parameters
A and R obviously satisfy equation (8). One should notice that the transformation (8) is
rather general since it is valid for arbitrary spin values SB , however, it is limited topologically.
In principle, from equation (11) one can obtain some physical quantities (such as the free
energy, internal energy, transverse magnetization and specific heat) by exploring familiar
thermodynamic relations. Nevertheless, in practice the calculations are extremely tedious
and complicated because of elliptic integrals included in the exact relations for the relevant
quantities of the triangular lattice. Another problem appearing in this approach is that we
cannot determine the longitudinal magnetization which is very important for understanding
the magnetic properties of the system. For this reason, we will now explain an alternative way
to avoid the above mentioned problems.

First of all, we will study the magnetization of our system. As mentioned above, the
honeycomb lattice consists of two interpenetrating sublattices with different spins, thus the
sublattice magnetization must be treated separately. The starting point for our calculation is
the Callen–Suzuki-type identity

〈(Ŝα
i )k〉h =

〈
Tri[(Ŝα

i )k exp(−βĤi )]

Tri exp(−βĤi )

〉
h

k = 1, 2 α = x, z (12)

which can be simply derived with the help of equation (2). Here 〈. . .〉h denotes the standard
ensemble average calculated with the Hamiltonian (1). Now, taking into account the symmetry
of the honeycomb lattice and applying one of the standard procedures (for instance, the
differential operator technique [11]), we get the following exact relations for the longitudinal
and transverse sublattice magnetization:

mz
Bh ≡ 〈Ŝz

i 〉h = 6K1〈µ̂i1〉h + 8K3〈µ̂z
i1µ̂z

i2µ̂z
i3〉h

mx
Bh ≡ 〈Ŝx

i 〉h = K0 + 12K2〈µ̂z
i1µ̂z

i2〉h

(13)

where the coefficients K0–K3 are given by:

K0 = 1
4 [GSB

(3J/2) + 3GSB
(J/2)] K1 = 1

4 [FSB
(3J/2) + FSB

(J/2)]
K2 = 1

4 [GSB
(3J/2) − GSB

(J/2)] K3 = 1
4 [FSB

(3J/2) − 3FSB
(J/2)].

(14)

The functions FSB
= xK(x) and GSB

= 
K(x) with

K(x) = 1√
x2 + 
2

SB∑
n=−SB

n sinh
(
nβ

√
x2 + 
2

)
SB∑

n=−SB

cosh
(
nβ

√
x2 + 
2

) . (15)
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Similarly, for k = 2 we obtain from equation (12) the following relation for the parameter
qz

Bh ≡ 〈(Ŝz
i )2〉h

qz
Bh = L0 + 12L2〈µ̂z

i1µ̂z
i2〉h (16)

with

L0 = 1
4 [HSB

(3J/2) + 3HSB
(J/2)] L2 = 1

4 [HSB
(3J/2) − HSB

(J/2)]. (17)

The function HSB
also depends on the spin value SB , and for example in the case of SB = 1 is

given by

H1(x) = 
2 + (2x2 + 
2) cosh β
√

x2 + 
2

(x2 + 
2)
[
2 cosh β

√
x2 + 
2 + 1

] . (18)

To finish our calculations, we have to determine the spin correlations on the r.h.s of
equations (13) and (16). For this purpose one can use the relation

〈f (µ̂ij , µ̂ik, . . . , µ̂i))〉h = 〈f (µ̂ij , µ̂ik, . . . , µ̂i))〉t (19)

which can be straightforwardly proved from the definition with the help of equation (7). Here f

stands for an arbitrary function and the symbols 〈. . .〉h and 〈. . .〉t denote the ensemble average
on the honeycomb and triangular lattice, respectively. Consequently, from equation (19) one
obtains relations

mAh ≡ 〈µ̂i1〉h = 〈µ̂i1〉t 〈µ̂i1µ̂i2〉h = 〈µ̂i1µ̂i2〉t 〈µ̂i1µ̂i2µ̂i3〉h = 〈µ̂i1µ̂i2µ̂i3〉t (20)

that complete our calculations, since the relevant spin correlations on the triangular lattice
are well known [12]. The total longitudinal magnetization of the system is then given by
M = (mz

Ah+mz
Bh)/2. Moreover, from the condition M = 0 one can calculate the compensation

temperature (Tk) for the ferrimagnetic system (J < 0). We recall that Tk is defined as a
temperature at which the total longitudinal magnetization of the system vanishes below the
critical temperature (Tc). Hence, the compensation temperature can be obtained from the
equation

1 − 6K1 − 8K3
〈µ̂z

i1µ̂z
i2µ̂z

i3〉h

mAh

= 0. (21)

It is clear from this equation that the compensation temperature will depend on the value of
spin SB as well as on the value of the transverse field 
. Apart from the quantities discussed
above, we are also able to get the transverse susceptibility which is defined as follows

χ⊥ =
(

∂Mx
Bh

∂


)
T

= N

2

(
∂mx

Bh

∂


)
T

. (22)

Finally, the internal energy can be found from the relation

Uh ≡ 〈Ĥh〉h = −3NJ

2
〈Ŝz

i µ̂z
i1〉h − N


2
〈Ŝx

i 〉h (23)

where 〈Ŝz
i µ̂z

i1〉h = (K1/2) + (4K1 + 2K3)〈µ̂z
i1µ̂z

i2〉h and 〈Ŝx
i 〉h is given by (13).

Now, let us discuss some interesting numerical results for the system under investigation.
At first, shown in figure 1 are the phase diagrams in the 
−Tc plane for SB = 1, 3/2 and 2. It can
be seen from the figure that the critical temperature monotonically decreases from its maximum
value at 
 = 0 and tends to zero for 
 → ∞. These results are qualitatively very similar to
those found in randomly diluted transverse Ising systems [13]. We recall that in the standard
models where all of the spins interact with the transverse field there exists a critical value of the
transverse field above which the ground state of the system becomes disordered. We can see
that the behaviour of our system differs from the standard picture since the ground state of our
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Figure 1. Transverse-field dependences
of the critical (dashed lines) and
compensation (solid lines) temperatures
for the transverse mixed spin Ising model
on the honeycomb lattice.

system remains ordered regardless of the value of the transverse field. This behaviour is caused
by the presence of Ising-type A atoms in the system that do not interact with the transverse
field. One should also notice that the phase diagrams are the same for both ferromagnetic
and ferrimagnetic systems, since equation (10) is invariant under transformation J = −J . In
addition to the critical temperature, we have also investigated the transverse-field dependences
of the compensation temperature, that are depicted by solid lines in figure 1. We have observed
that the compensation temperatures decrease with decreasing value of 
 and reduce to zero

at a certain critical value which is given by 
0/|J | = 3(

√
4S2

B − 1)/2. We can also see that
the region where the compensation effect appears is very narrow (�
k/|J | ≈ 0.1 − 0.2) and
moves to higher values of 
 with the increasing value of the spin SB .

Next, let us discuss the temperature dependences of the longitudinal and transverse
magnetization. Here it is worth noticing that the magnetization exhibit qualitatively very
similar behaviour for the systems with different spin SB . For this reason we restrict our
attention to the case of SB = 1 only and we will consider the ferrimagnetic case which is
more interesting than ferromagnetic one. In figures 2 and 3, the temperature dependences
of the total longitudinal (M) and transverse magnetization mx

Bh are depicted for some typical

0.0 0.1 0.2 0.3
0.0

0.4

0.8
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1.6

x

SB = 1

2.6

2.59

2.61

Ω / |J| = 2.62

|M
|  

  1
0-3

kB T / |J|

Figure 2. Longitudinal magnetization
curves of the transverse mixed spin-1/2
and spin-1 Ising model on the honeycomb
lattice.
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Figure 3. Temperature dependences
of the transverse magnetization for the
transverse mixed spin-1/2 and spin-1
Ising model on the honeycomb lattice.

values of the transverse field 
. We can see that by applying the transverse field, the effect
of compensation is really induced in the system. This phenomenon appears because of the
different influence of the transverse field on the sublattice A and B, respectively. One should
also notice that the critical behaviour of the system is universal i.e. the system belongs to
the same universality class as the usual two-dimensional Ising model. The results in figure 3
for the transverse sublattice magnetization curves mx

Bh exhibit completely different behaviour
since the magnetization in the x direction exists at all temperatures (for 
 �= 0).

In conclusion, we have studied in this work the transverse mixed spin Ising model which is
exactly solvable by the use of the generalized star-triangle transformation. We have investigated
the phase diagrams and the compensation temperatures of the system for the case of SB = 1,
3/2 and 2. In addition, we have also studied other physical quantities such as the longitudinal
and transverse magnetization. It is clear that the method presented in this work can be naturally
extended to other planar lattices that satisfy topological requirements following from the
generalized star-triangle transformation.

This work has been supported by the Ministry of Education of Slovak Republic under grant
No. 1/6020/99.
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